Machine Learning and Big Data-enabled Biotechnology



de

Éditeur :

Wiley-VCH


Collection :

Advanced Biotechnology

Paru le : 2026-01-09



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
160,99

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Enables researchers and engineers to gain insights into the capabilities of machine learning approaches to power applications in their fields
Machine Learning and Big Data-enabled Biotechnology discusses how machine learning and big data can be used in biotechnology for a wide breadth of topics, providing tools essential to support efforts in process control, reactor performance evaluation, and research target identification.
Topics explored in Machine Learning and Big Data-enabled Biotechnology include: Deep learning approaches for synthetic biology part design and automated approaches for GSM development from DNA sequences De novo protein structure and design tools, pathway discovery and retrobiosynthesis, enzyme functional classifications, and proteomics machine learning approaches Metabolomics big data approaches, metabolic production, strain engineering, flux design, and use of generative AI and natural language processing for cell models Automated function and learning in biofoundries and strain designs Machine learning predictions of phenotype and bioreactor performance
Machine Learning and Big Data-enabled Biotechnology earns a well-deserved spot on the bookshelves of reaction, process, catalytic, and environmental engineers seeking to explore the vast opportunities presented by rapidly developing technologies.
Pages
432 pages
Collection
Advanced Biotechnology
Parution
2026-01-09
Marque
Wiley-VCH
EAN papier
9783527354740
EAN PDF
9783527850525

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
432
Taille du fichier
6728 Ko
Prix
160,99 €
EAN EPUB
9783527850518

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
432
Taille du fichier
8980 Ko
Prix
160,99 €